EOR Success
Mann Field, Myanmar

Enzyme Enhanced Oil Recovery (EOR)

- EOR - accepts for Enzyme Enhanced Oil Recovery
- EOR - GreenZyme

According to supplier, it does not crack hydrocarbons. Enzyme does not form emulsions and is insoluble with oil.

In case oil condition is not wet by water.

Oil stuck to rock has to have mobility. It may not be in solid state, otherwise enzyme cannot release it from surface of grains.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Temperature limit tested was 200°C. Enzyme continues to function that, albeit slower. Temperature limit tested was 200°C.

Enzyme diluted to 4% showed satisfactory performance in sandstone formation.

Enzyme concentrates of 10% are effective, and may not be in solid state, otherwise enzyme cannot release it from surface of grains.

Enzyme presents instability, a forming a precipitate after resting for a few days. Presence of divalent cations seemed to have aggravated problem.

Submitted to extreme conditions of pH, temperature, salinity and shearing, enzyme continues to function that, albeit slower. Temperature limit tested was 200°C.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme continues to function that, although slower. Temperature limit tested was 200°C.

Enzyme diluted to 4% showed satisfactory performance in sandstone formation.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.

Enzyme can effectively move oil from surface of grains of sandstone, provided that these hydrocarbons are above point of fluidity.

Mechanism of operation seems to be a reversal of wettability, making grains strongly wet by water.